7 research outputs found

    Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC.

    Get PDF
    Tallant, C., et al., Structure 23, 80–92, January 6, 2015 http://dx.doi.org/10.1016/j.str.2014.10.017Binding of the chromatin remodeling complex NoRC to RNA complementary to the rDNA promoter mediates transcriptional repression. TIP5, the largest subunit of NoRC, is involved in recruitment to rDNA by interactions with promoter-bound TTF-I, pRNA, and acetylation of H4K16. TIP5 domains that recognize posttranslational modifications on histones are essential for recruitment of NoRC to chromatin, but how these reader modules recognize site-specific histone tails has remained elusive. Here, we report crystal structures of PHD zinc finger and bromodomains from human TIP5 and BAZ2B in free form and bound to H3 and/or H4 histones. PHD finger functions as an independent structural module in recognizing unmodified H3 histone tails, and the bromodomain prefers H3 and H4 acetylation marks followed by a key basic residue, KacXXR. Further low-resolution analyses of PHD-bromodomain modules provide molecular insights into their trans histone tail recognition, required for nucleosome recruitment and transcriptional repression of the NoRC complex.This work was supported by the UK Biotechnology and Biological Sciences Research Council (grants BB/G023123/1 David Phillips Fellowship to A.C. and BB/J001201/1 to A.C.) and a Federation of European Biochemical Societies short-term fellowship (04-11-12-10 to C.T.). We are grateful to Dr. Dimitri Y. Chirgadze of the Crystallographic X-Ray Facility at the Department of Biochemistry, University of Cambridge, and to the technical support at Diamond Light Source Synchrotron Facilities. We acknowledge support from the European Commission FP7 Programme under BioStruct-X (grant agreement 283570) for SAXS data collection at the EMBL (DESY). The SGC is a registered charity (No. 1097737) that receives funds from AbbVie, Bayer, Boehringer Ingelheim, the Canada Foundation for Innovation, the Canadian Institutes for Health Research, Genome Canada, GlaxoSmithKline, Janssen, Lilly Canada, the Novartis Research Foundation, the Ontario Ministry of Economic Development and Innovation, Pfizer, Takeda, and the Wellcome Trust (092809/Z/10/Z). E.V. is supported by a European Commission FP7 Marie Curie grant IDPbyNMR (contract 264257). P.F. is supported by a Welcome Trust Career Development Fellowship (095751/Z/11/Z)

    Diversity oriented biosynthesis via accelerated evolution of modular gene clusters.

    Get PDF
    Erythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines. The method is exemplified in the rapamycin biosynthetic gene cluster where, in a single experiment, multiple strains were isolated producing new members of a rapamycin-related family of polyketides. The process mimics, but significantly accelerates, a plausible mechanism of natural evolution for modular polyketide synthases. Detailed sequence analysis of the recombinant genes provides unique insight into the design principles for constructing useful synthetic assembly-line multienzymes

    The monolayer structure of 1,2-bis(4-pyridyl)ethylene physisorbed on a graphite surface

    No full text
    The crystalline monolayer of 1,2-bis(4-pyridyl)ethylene physisorbed on a graphite surface at 0.44 monolayers coverage has been observed and characterized by synchrotron X-ray diffraction and differential scanning calorimetry. The experimentally determined monolayer structure has p2 symmetry with lattice parameters a?=?17.77?Å, b?=?13.69?Å and ??=?39.7°. The unit cell contains two molecules, which are oriented in a plane parallel to the surface. It is proposed that the molecules are arranged such that they are able to form a weak C–H?···?N hydrogen bond between pyridine groups. The monolayer melts at 414?K, which is unusually close to the bulk melting point for a sub-monolayer coverage system. This molecule is chiral when adsorbed on the surface, but both isomers appear in the unit cell leading to no overall chirality in the monolayer.<br/
    corecore